曲がり管式血流計の脈波伝播時間を用いたゼロ点ドリフト補償法に関する研究

Zero Point Drift Compensation Method using Pulse Transit Time for Blood Flow Meter

Ο	福田恭平	(東理大院)	小阪亮(産総研)
	西田正浩	(産総研)	丸山修(産総研)
	山根隆志	(神戸大)	川口靖夫(東理大)

*Kyohei FUKUDA, †Ryo KOSAKA, †Masahiro NISHIDA, †Osamu MARUYAMA, ‡Takashi YAMANE, §Yasuo KAWAGUCHI

*Graduate School of Science and Technology, Tokyo University of Science; †National Institute of Advanced Industrial Science and Technology (AIST); ‡Kobe University; §Tokyo University of Science

Abstract: We have developed a blood flow meter especially for an axial flow blood pump. However, zero point drift of the flow meter is caused by external factors such as temperature change and external forces. This factor makes it difficult to measure flow rate precisely for long periods. Therefore, we proposed a zero point drift compensation method using Pulse Transit Time (PTT), which is not affected by external factors and correlated with the amount of pressure change. We measured PTT and the amount of pressure change on the pulse wave simulating the heartbeat. As a result, the correlation was confirmed between PTT and the amount of pressure change. This result can explain zero point drift is compensated. **Key words:** Mass Flow Meter, Pulse Transit Time, Drift Compensation

1. 緒言

体内埋込型補助人工心臓の発展に伴い、その補助人工心臓の駆動状態や適用された患者の生体状況を知ることは、より重要な位置付けとなってきた.これらの情報を得る1つの手法として、ポンプの血流量計測が有効であるため、ポンプ同様、体内埋込型の血流計が求められている.

ポンプ血流量の計測方法として、ポンプの消費電力から 流量を推定する流量推定法や、市販血流計を利用する方法 がある.しかし、図1に示すように、流量推定法は、軸流 型のポンプに対して流量と消費電力の間に相関関係がなく、 適用が困難である⁽¹⁾.また、市販血流計として、トランジ ットタイム式超音波血流量計や電磁流量計がある.これら は小型化に限界があり、退院後に在宅で使用することは容 易ではない.そのため、遠心型・軸流型といったポンプ特 性の違いによる影響を受けず、血栓形成や感染症を生じな い非観血の流量計測を小型、軽量で実現する必要がある.

そこで,我々は,上記の条件を満たした,体内埋込型補助人工心臓のための小型曲がり管式血流計を開発している. しかし,本血流計は,流量を計測するのに必要となるひずみに対し,温度や外力等の外的要因により,ゼロ点ドリフトが生じるため,長期間の安定計測が困難である.

我々は,外的要因によるゼロ点ドリフトを補償するため, 圧力変化量と相関のある脈波伝播時間(PTT: Pulse Transit Time)⁽²⁾を用いた,本血流計のゼロ点ドリフト補償法を提案 した.本研究では,ゼロ点ドリフト補償法の有効性につい て実験的に検証した.

2. 小型血流計

研究対象である小型血流計は、図2に示すように、体内 埋込型補助人工心臓のポンプに脱血管として接続された曲 がり管をセンサプローブとし、流量を計測する.小型血流 計は、内径12 mm、外径14 mmのチタンの曲がり管であり、 曲率半径 30 mm、120 °の曲がり部を有する.遠心力が強 く生じる曲がり部として流入口から 30 °の点(A 点)、遠心 力の影響が少ない直管部として流入口から 120 °の点(B 点)、計2点に長さ0.2 mmのひずみゲージ(特注品、日章電 機(株))を貼付してある. ひずみゲージを貼付した部分に は、内圧による局所的なひずみが生じやすい構造にするた

め,直径 6 mm,肉厚は 150 μm まで薄肉加工してある⁽¹⁾. 本血流計では、遠心力により増加した圧力が、流量と相 関があることを用いて、流量を計測する.遠心力により増 加した圧力を計測するため、圧力と線形の関係にある、A 点とB点に貼付したひずみゲージを使用した.A点で遠心 力と静圧の合算値を計測し、B点で静圧を計測する.A点 における静圧のバックグラウンドを、B点により差し引く ことで、遠心力により増加した圧力のみが得られ、流量を 計測することができる⁽¹⁾.以下、A点とB点に貼付された ひずみゲージを、センサ A、センサ B とする.

Fig.1 An example of the correlation between flow rate and power consumption under constant rotational speed

Fig. 2 Blood mass flow meter with two strain gauges

3. 補償アルゴリズム

3-1 脈波伝播速度·時間

脈波伝播速度(PWV: Pulse Wave Velocity)は、動脈を進む 圧脈波の速度である⁽¹⁾.動脈の中で、異なる 2 点間におけ る脈波を記録したとき、PWV は、その 2 点間の時間差であ る脈波伝播時間(PTT: Pulse Transit Time)と 2 点間の距離 (ΔL)から、式(1)で定義される.

$$PWV = \frac{\Delta L}{PTT} \tag{1}$$

一方, PWV と血管の弾性の関係は, Moens-Korteweg の
式から,式(2)で表される.

$$PWV = \sqrt{\frac{E \times h}{2r \times \rho}}$$
(2)

ここで, E はヤング率, h は血管壁の厚さ, r は血管内の半径, ρ は血液の粘度を示す. ヤング率以外のパラメータは, ヤング率に比べて変化量が小さく, PWV はほぼヤング率に 依存していると仮定する. また, ヤング率は, 式(3)で表す ことができる.

$$E = \frac{\Delta P}{h \times \Delta D} \tag{3}$$

ΔP は圧力変化量, ΔD は血管壁の内径変化量を示す.図 3 に,圧力変化量 ΔP の定義を示す.式(3)を式(1),(2)に代入 し,定数をαとして整理すると,式(4)が得られる.

$$PTT = \alpha \sqrt{\frac{\Delta D}{\Delta P}} \tag{4}$$

式(4)から, PTT は, 圧力変化量及び内径変化量が支配的 である.このとき, 圧力変化量は, ひずみゲージにより得 られるのに対し, 内径変化量は, 計測が困難である.そこ で, 内径変化量と圧力最低値の関係に着目した.圧力が増 加すると, 内径は拡がっていく.このとき, 圧力変化量を 一定とすると, 圧力最低値の増加に伴い, 内径は変化しづ らくなる.つまり, 内径変化量は, 小さくなる.ここで圧 力最低値と内径変化量が線形関係にあると近似すると,

 $\Delta D = \beta \times P_L \tag{5}$

ここで、 P_L は図 3 に示す拍動の圧力最低値、 β は係数を示 す.式(5)を式(4)に代入し、定数を γ として整理すると、式 (6)が得られる.

$$P_L = \gamma \times PTT \times \Delta P \tag{6}$$

すなわち, 圧力最低値は, PTT と圧力変化量の関数である.

3-2 ゼロ点ドリフト補償法

本血流計は、先に述べたとおり、ひずみから流量を計測 している.したがって、血流計に生じる流量のドリフトを 補償するためには、ひずみに生じるゼロ点ドリフトを補償 する必要がある.そのため、式(6)より得られた PTT と圧力 変化量及び圧力最低値の関係から、ひずみに生じるゼロ点 ドリフトを補償する.

ゼロ点ドリフトによって, 圧波形が図 3 のように変化し たと仮定する. このとき, 圧力変化量 ΔP は変化しないが, ひずみのゼロ点ドリフトにより, ドリフトした量を P_{Drift} とすると, P_L は, P_L+P_{Drift} に変化する. しかし, ひずみゲ ージにより計測された圧力にゼロ点ドリフトが生じても, PTT は一定である. したがって, ゼロ点ドリフト後の式(6) は, 次のように表される.

$$P_L + P_{Drift} \neq \gamma \times PTT \times \Delta P$$
 (7)
右辺は変化しないが,左辺はゼロ点ドリフトにより変化
する.したがって,変化した後の P_L+P_{Drift} を,変化する前

の PLに置き換えることで、ゼロ点ドリフトを補償する.

以上の方法により、外的要因に影響されない PTT と、ひ ずみゲージから計測できる ΔP を利用することで、ゼロ点 ドリフトを補償することができる.

4. 実験方法

4-1 PTT と PLの校正試験

図4に示す,小型血流計のひずみゲージ2点(センサA, センサB)におけるP_LとPTT補償用のひずみゲージ(センサ C)におけるPTTとの校正式を得るため,模擬拍動を利用し た校正試験を実施した.

試験回路を図5に示す. 校正試験では、血液ポンプ、塩

Fig.3 Pulse wave simulated the heartbeat

Fig. 5 Mock circulation loop to measure flow rate by blood flow meter and relationship between PTT and P_L

化ビニル製の硬質チューブ(MERA Exceline-H,泉工医科工 業(株))、本血流計、塩化ビニル製の軟質チューブ(特殊産業 用ホース,日之出化成(株)), PTT 補償用センサ,硬質チュ ーブ,血液リザーバ(特注品,泉工医科工業(株)),硬質チュ ーブで一巡となるよう接続された体循環系を模擬した閉回 路を使用し、回路内に水を満たした.センサCは、内径12 mm,長さ60mmの直管に、センサA及びB同様、長さ0.2 mm のひずみゲージを貼付し、ひずみが生じやすいよう、 肉厚を150μmまで薄肉加工した.センサCと本血流計は, 図 4 に示すように、PTT を検出しやすくするため、1.0 m の塩化ビニル製の軟質のチューブで接続した.流路抵抗は, 流量 5.0 L/min, 圧力 100 mmHg となるよう調整した. 校正 式を得るための市販計測機器として,圧力計(AP641-G,日 本光電(株))と流量計(T402, Transonic System inc.)を用いた. ひずみは、直流型ひずみ増巾器(DSA-100A、日章電機(株)) で増幅し、パソコンで取り込んだ.サンプリング周波数は、 10 kHz とした. 試験では、ポンプ回転数を制御することで、 約30 bpm の圧波形を作った. 圧波形の ΔP は, 80 mmHg, 100 mmHg, 120 mmHgの3条件とし, PLを10 mmHg ずつ 増加させた. 各実験条件における, センサAとC, センサ BとCに対する、模擬拍動 10 回分の PTT と P_Lの平均を求 め, センサAとC, センサBとCについて, 校正式(6)を 求めた.

4-2 ゼロ点ドリフト補償実験

ゼロ点ドリフト補償法の有効性を検証するため,得られ た校正式を利用し,ゼロ点ドリフト補償実験を実施した. 試験回路は,4-1 で使用したものと同一である.実験で は,4-1 同様,ポンプの回転数を制御し, ΔP が 80 mmHg のとき P_L が 30 mmHg, ΔP が 100 mmHg のとき P_L が 30

mmHg, ΔP が 120 mmHg, ΔP が 100 mmHg のとさ P_L が 30 mmHg, ΔP が 120 mmHg のとき P_L が 20 mmHg で一定とし た,約 30 bpm の圧波形を作った.このとき,ひずみアン プのオフセットを調節することで,故意にひずみのゼロ点 ドリフトを発生させた.ゼロ点ドリフトを発生させた直後 から模擬拍動 10 回分の PTT 及び P_L + P_{Drit} を計測し,セン サ A と C,センサ B と C におけるドリフト後の校正式(7) を得た.ドリフト前後の校正式を比較し, P_L にゼロ点ドリ フトが生じている場合,変化した圧力を補償した.同時に,本血流計と市販流量計により流量を計測することで,本補 償法の有無による流量計測性能と市販流量計の流量を比較 し,本補償法の有効性を検証した.

5. 結果

5-1 PTTとPLの校正試験

センサAとC, センサBとCにおける, PTTとP_Lの相関関係 について, $\Delta P i 80 \text{ mmHg}$, 100 mmHg, 120 mmHgのときの 結果を, それぞれ図6(a), (b), (c)に示す. グラフの横軸は, 各センサ間に生じるPTTであり, 縦軸は, 市販圧力計で計 測した図3におけるP_Lの値を示している.

図6(a)から、ΔPが80 mmHgのときセンサAとC、センサB とCにおける校正式(6)は、それぞれ、

$$P_L = -11413.54 \times PTT + 346.24 \tag{8.1}$$

P_L = −12201.05 × PTT + 349.92 (8.2) となり、相関係数はそれぞれ0.995、0.976であり、高い相

関係数を得た. 図6(b)から, ΔPが100 mmHgのときセンサAとC, センサB とCにおける校正式(6)は,それぞれ,

$$P_L = -11069.67 \times PTT + 338.91 \tag{9.1}$$

$$P_L = -11159.52 \times PTT + 322.96 \tag{9.2}$$

となり、相関係数はそれぞれ0.878、0.981であり、高い相関係数を得た. P_L が10 mmHgにおけるセンサAとセンサC のPTTは、 P_L が20 mmHg時のPTTを下回り、 P_L の上昇に伴い PTTが減少する原理と一致しない点があった.

図6(c)から, ΔPが120 mmHgのときセンサAとC, センサB とCにおける校正式(6)は, それぞれ,

 $P_L = -7389.16 \times PTT + 229.19 \tag{10.1}$

P_L = −17077.52 × *PTT* + 472.38 (10.2) となり,相関係数はそれぞれ0.964, 0.982であり,高い相 関係数を得た.

Fig.6 Relationship between PTT and $P_{\rm L}$ in the sensor A–C and sensor B–C

5-2 ゼロ点ドリフト補償実験

ゼロ点ドリフトを発生させたとき、校正式(8)~(10)により、センサA及びBに生じたゼロ点ドリフトを補償し、流量を計測した結果を、図7に示す.

ΔPが80 mmHgでは、ひずみのゼロ点ドリフトにより、セ ンサAとセンサBのP_Lは, 30.2 mmHgから, それぞれ36.6 mmHg, 42.7 mmHgに変化した. また, ゼロ点ドリフト後 のPTTは、センサAとC間、センサBとC間では、それぞれ 0.0280 s, 0.0265 sであった. ゼロ点ドリフト後のPTTから PLを求めると、センサAとBのPLは、それぞれ26.9 mmHg, 26.8 mmHgであると推測された.本結果から、PLのドリフ トをそれぞれ, センサAでは,約3.5 mmHg, センサBでは, 約9.4 mmHg抑えることができた.次に、PTTより算出され た本PLを用いて,流量の計測を行った.その結果,図7(a) に示すように、ゼロ点ドリフトを発生させる前は、本血流 計において,市販流量計の値に対し,平均約0.20 L/minの誤 差が生じた. ゼロ点ドリフトを発生させると、本補償法を 適用しない場合において, 市販流量計の値に対し, 本血流 計は、平均約2.04 L/minの誤差が生じた.一方、本補償法を 適用した場合,平均約0.81 L/minの誤差となり,平均流量の 誤差を約1.23 L/min抑えることができた.

 ΔP が100 mmHgのとき、ゼロ点ドリフトにより、センサA とセンサBのP_Lは、31.5 mmHgから、それぞれ37.5 mmHg, 44.1 mmHgに変化した. ゼロ点ドリフト後のPTTは、セン サAとC間、センサBとC間では、それぞれ0.0282 s、0.0262 s であった. ゼロ点ドリフト後のPTTからP_Lを求めると、セ ンサAとBのP_Lは、それぞれ27.0 mmHg、30.9 mmHgである と推測された.本結果から、P_Lのドリフトをそれぞれ、セ ンサAでは、約1.5 mmHg、センサBでは、約11.9 mmHg抑え ることができた.次に、PTTより算出された本P_Lを用いて、 流量の計測を行った.その結果、図7(b)に示すように、ゼ ロ点ドリフトを発生させると、本補償法を適用しない場合 において、市販流量計の値に対し、本血流計は、平均約2.75 L/minの誤差が生じた.一方、本補償法を適用した場合、平 均約1.31 L/minの誤差となり、平均流量の誤差を約1.44 L/min抑えることができた.

 ΔP が120 mmHgのとき、ゼロ点ドリフトにより、センサA とセンサBのP_Lは、20.7 mmHgから、それぞれ26.0 mmHg、 31.8 mmHgに変化した. ゼロ点ドリフト後のPTTは、セン サAとC間、センサBとC間では、それぞれ0.0280 s、0.0266 s であった. ゼロ点ドリフト後のPTTからP_Lを求めると、セ ンサAとBのP_Lは、それぞれ22.3 mmHg、17.6 mmHgである と推測された.本結果から、P_Lのドリフトをそれぞれ、セ ンサAでは、約3.7 mmHg、センサBでは、約8.0 mmHg抑え ることができた.次に、PTTより算出された本P_Lを用いて、 流量の計測を行った.その結果、図7(c)に示すように、ゼ ロ点ドリフトを発生させると、本補償法を適用しない場合 において,市販流量計の値に対し,本血流計は,平均約2.25 L/minの誤差が生じた.一方,本補償法を適用した場合,平 均約0.78 L/minの誤差となり,平均流量の誤差を約1.47 L/min抑えることができた.

本結果から、本補償法を適用した後では、ゼロ点ドリフトによる平均流量の誤差を抑えられることがわかった.これにより、本補償法の有効性を確認することができた.

6. 考察

各 Δ PにおけるPTTとP_Lに対する校正式において、一次近 似したとき、いずれも高い相関係数が得られた.これは、 センサA及びBとセンサCの間に繋いだ軟質のチューブの 内径変化量が、P_Lの増加に伴い、線形的に減少していくこ とを示している.しかし、P_Lの変化量に対するPTTの変化 量が小さいため、結果として流量補正時に誤差が生じやす く、チューブの長さが1.0 m必要となる.体内埋込型補助人 工心臓に用いる場合、本血流計も同時に体内に埋め込むた め、チューブを短くする必要がある.チューブを短くする ことで、本結果の傾きが小さくなり、誤差は大きくなると 考えられるため、精度について検証が必要である.また、 Δ Pが120 mmHgのとき、P_LとPTTの校正式が他の Δ Pの校正 式と異なったが、他の Δ Pと比較して計測点が3点のみであ り、また校正式を得る際の計測点が少ないことが原因とし て考えられるため、今後、実験条件を増やし、検証を行う.

また、埋込型補助人工心臓を使用した際に、本補償法を 適用することができるかを示す必要がある.そのため、校 正式を求める際、他の $\Delta P \diamond P_L$ 、拍動数等で実験を行い、埋 込型補助人工心臓を使用する条件に合わせて、検証を行う.

7. 結言

曲がり管式血流計において,流量に対するゼロ点ドリフトを補償するため,PTTを用いたゼロ点ドリフト補償法の 有効性を検証した.その結果,本補償法を適用することで, ゼロ点ドリフトによる誤差を抑えることを確認した.これ は,拍動の圧波形を取得することで,自動でゼロ点ドリフトを補償することができることを示唆している.

今後,ドリフトレス血流計を開発するため,高精度でゼ ロ点ドリフトを補償することを目指す.

8. 参考文献

- R.Kosaka, M.Nishida, et al., Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis, J Artif Organs. 2011, Vol.14, No.3, pp.178-184
- 2) 増田達哉,吉澤誠ら,非侵襲小型連続血圧・心拍計測 装置を用いた映像刺激の生体影響評価,計測自動制 御学会第201回研究集会,2002,201-8

Fig.7 Comparison of the flow rate measurement performance according to the presence or absence of compensation